MATH2050C Final Examination

Answer all five questions. You should justify your answer.

1. (a) (10 marks) Use $\varepsilon-\delta$ definition to determine the following limit

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{3 x^{2}-2 x-1}
$$

(b) (5 marks) Determine the limit in (a) using Limit Theorem.

Solution (a) For $x \neq 1, \frac{x^{2}-1}{3 x^{2}-2 x-1}=\frac{x+1}{3 x+1}$. We have

$$
\left|\frac{x+1}{3 x+1}-\frac{1}{2}\right|=\left|\frac{x-1}{2(3 x+1)}\right|
$$

For $x,|x-1|<1 / 2, x>1-1 / 2=1 / 2$. Therefore, $1 / 2(3 x+1)<1 / 2(3 / 2+1)=1 / 5$ so

$$
\left|\frac{x+1}{3 x+1}-\frac{1}{2}\right|=\left|\frac{x-1}{2(3 x+1)}\right|<\frac{|x-1|}{5} .
$$

For $\varepsilon>0$, let $\delta=\min \{1 / 2,5 \varepsilon\}$, then

$$
\left|\frac{x^{2}-1}{3 x^{2}-2 x-1}-\frac{1}{2}\right|=\left|\frac{x+1}{3 x+1}-\frac{1}{2}\right|<\frac{|x-1|}{5}<\frac{5 \varepsilon}{5}=\varepsilon .
$$

We conclude that

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{3 x^{2}-2 x-1}=\frac{1}{2} .
$$

(b) Clearly, $\lim _{x \rightarrow 1}(x+1)=2$ and $\lim _{x \rightarrow 1}(3 x+1)=4$. By Limit Theorem (or Quotient Rule),

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{3 x^{2}-2 x-1}=\frac{\lim _{x \rightarrow 1}(x+1)}{\lim _{x \rightarrow 1}(3 x+1)}=\frac{1}{2} .
$$

2. Determine the largest domains on which these functions are defined and study their continuity:
(a) (10 marks) $\sqrt{\frac{x-1}{x+2}}$.
(b) (10 marks) $g \circ f(x)$ where $f(x)=x^{2}$ and $g(z)=1-z, z \geq 0$ and $g(z)=0, z<0$.

Solution (a) The largest domain of definition is $(-\infty,-2) \cup[1, \infty)$ and the function is continuous there.
(b) This function is continuous on $(-\infty, \infty)$.
3. (a) (5 marks) Let $\left\{x_{n}\right\}$ be a sequence of positive numbers converging to x. Use the $\varepsilon-n_{0}$ definition to show that x is non-negative.
(b) (10 marks) Let f be a continuous function on $[a, b]$ satisfying $f(a)<0$ and $f(b)>0$. Use the bisection method to show that there is some $c \in(a, b)$ satisfying $f(c)=0$.
(c) (5 marks) Prove that the function $g(x)=x^{2}-64 x \sin x+18 \cos x$ has at least two roots.

Solution (a) Suppose on the contrary x is negative. Taking $\varepsilon=|x| / 2$, there is some n_{0} such that $\left|x_{n}-x\right|<|x| / 2$ for all $n \geq n_{0}$. But then $x_{n}-x<|x| / 2$ which implies $x_{n}<x+|x| / 2<0$, contradiction holds. (Other correct solutions are allowed.)
Solution (b) See textbook.
Solution (c) Observe that $g(\pi)=\pi^{2}-18<0$ and

$$
g(x)=x^{2}\left(1-\frac{64 \sin x}{x}+\frac{18 \cos x}{x^{2}}\right) \rightarrow \infty
$$

respectively as $x \rightarrow \pm \infty$. We can fix a large $M>0$ such that $g(\pm M)>0$. Applying the Location of Root Theorem to g and $[-M, \pi]$ we conclude g has a root in $(-M, \pi)$. By the same reasoning, it also has a root in (π, M). Therefore, g has at least two (real) roots.
4. (a) (10 marks) Show that $\sin 1 / x$ is not uniformly continuous on $(0,1]$.
(b) (10 marks) Let F be a continuous function on $[-1,1]$. Suppose the function $F(\sin 1 / x)$ is uniformly continuous on $(0,2 \pi]$. Show that F must be a constant function.

Solution (a) If $f(x) \equiv \sin 1 / x$ is uniformly continuous on $(0,1]$, then for $\varepsilon=1$, there is some $\delta>0$ such that $|f(x)-f(y)|<1$ whenever $|x-y|<\delta$. However, taking $x_{n}=1 / 2 n \pi$ and $y_{n}=1 /(2 n \pi+1 / 2)$, we have $\left|x_{n}-y_{n}\right|<\delta$ for large n and yet $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=1$, contradiction holds. Hence f is not uniformly continuous on $(0,1]$.
(b) As $F(\sin 1 / x)$ is uniformly continuous on $(0,2 \pi]$, it extends as a continuous function on $[0,2 \pi]$. Pick any two numbers $a, b \in[-1,1]$. We can find $\left\{x_{n}\right\}, x_{n} \rightarrow 0$, such that $\sin 1 / x_{n} \rightarrow a$, and $\left\{y_{n}\right\}, y_{n} \rightarrow 0$ such that $\sin 1 / y_{n} \rightarrow b$ as $n \rightarrow \infty$. Since $x_{n}, y_{n} \rightarrow 0$, by the continuity of $F(\sin 1 / x)$ at $x=0, F(a)=\lim _{n \rightarrow \infty} F\left(\sin 1 / x_{n}\right)=\lim _{n \rightarrow \infty} F\left(\sin 1 / y_{n}\right)=$ $F(b)$. We conclude that F is a constant function.
5. (a) (10 marks) Show that for each $x \geq 0$,

$$
E(x) \equiv \lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}
$$

exists.
(b) (10 marks) Show that the limit in (a) exists for all real numbers x and $E(x) E(-x)=1$ holds.
(c) (5 marks) Show that

$$
\lim _{t \rightarrow \infty}\left(1+\frac{x}{t}\right)^{t}, x \in \mathbb{R}
$$

exists and is equal to $E(x)$.
Solution (a) See textbook or my notes.
(b) See Exercise.
(c) Assume $x \geq 0$. (The negative case can be treated by a similar way.) Let $\left\{t_{n}\right\}$ be any sequence $t_{n} \rightarrow \infty$, we can find $m \rightarrow \infty$ such that $m \leq t_{n}<m+1$. Then $1+x /(m+1) \leq$ $1+x / t \leq 1+x / m$. It follows that

$$
\left(1+\frac{x}{m+1}\right)^{t_{n}} \leq\left(1+\frac{x}{t_{n}}\right)^{t_{n}} \leq\left(1+\frac{x}{m}\right)^{t_{n}}
$$

so

$$
\left(1+\frac{x}{m+1}\right)^{m+1}\left(1+\frac{x}{m+1}\right)^{-1} \leq\left(1+\frac{x}{t_{n}}\right)^{t_{n}} \leq\left(1+\frac{x}{m}\right)^{m}\left(1+\frac{x}{m}\right)
$$

By squeezing,

$$
E(x) \leq \lim _{t_{n} \rightarrow \infty}\left(1+\frac{x}{t_{n}}\right)^{t_{n}} \leq E(x) .
$$

By the Sequential Criterion for limit,

$$
\left(1+\frac{x}{t}\right)^{t} \rightarrow E(x),
$$

as $t \rightarrow \infty$ for $x \geq 0$.

